Mobile Cardiac Monitoring in Rural Settings

Kyle A. Roth, FNP Student

Nightingale College

Background and Clinical Question

Cardiovascular disease significantly impacts rural patients where access to specialized care is limited. Rural patients have 37% more cardiovascular-related ED visits, with geographic distance and provider scarcity creating barriers. Arrhythmias are diagnosed and treated at lower rates in rural settings.

Clinical Question: Can mobile cardiac monitoring reduce acute care utilization by 30% during a 12-month implementation period in rural primary care settings?

Purpose Statement

SMART GOAL: Reduce cardiovascular-related acute care utilization by 30% within a 12-month implementation period in rural primary care settings.

Secondary Objectives:

- Achieve 90% patient compliance with monitoring protocols
- Establish critical event response times
 <30 minutes
- Complete provider education protocols (≥85%)
- Improve quality-of-life metrics

Current Evidence

Systematic reviews demonstrate consistent benefits of remote cardiac monitoring in rural and underserved populations:

25-35% Reduction in Cardiac Hospitalizations 91-94% Sensitivity for Arrhythmias

Evidence supports remote monitoring effectiveness with significant improvements in patient outcomes and cost-effectiveness.

Methodology

1. Population/Eligibility: Rural patients with suspected

heart disease

- · Cognitive ability to use devices
- · Internet access availability
- · Ability to provide informed consent
- **2. Practice Setting:** Primary clinics connected to tertiary care facilities serving rural communities.

Cost Analysis

Investment Justification:

- Average cost per cardiac hospitalization: \$2,400
- Monthly monitoring cost per patient: \$180
- Break-even point: 6-8 months
- Savings per prevention: \$1,200

Break-even analysis shows cost recovery within 6-8 months through prevented hospitalizations. Value-based care models support financial sustainability and demonstrate clear return on investment.

Design

- Interventions: Three-component framework including centralized platform with Al algorithms, tiered clinical response system, and patientcentered devices (ECG patches, BP monitors).
- Key Stakeholders: Rural primary care physicians, consulting cardiologists, nurse coordinators, community representatives.
- Evaluation Methods: Mixed-methods approach using validated instruments (AFEQT, KCCQ), EHR data analysis, and qualitative interviews to assess outcomes and implementation effectiveness.

Anticipated Results

Based on previous studies, expected outcomes include:

30% Reduction in Acute Care Utilization	90% Patient Compliance Target
25 min Mean Response Time	4.2-4.5 Patient Satisfaction Score

Projected Impact: 32-38% reduction in cardiac hospitalizations, 28-32% decrease in heart failure exacerbations.

Conclusion

Mobile cardiac monitoring in rural settings demonstrates significant potential for reducing healthcare disparities while improving patient outcomes. The evidence supports implementation with strong clinical and economic benefits.

The three-component framework provides a sustainable model for rural cardiovascular care delivery that can be replicated across similar healthcare systems.

Future Recommendations

Sustainability Strategies:

- Integration into standard care pathways
- · Value-based reimbursement models
- Provider training and competency programs
- Technology platform standardization

Expansion Opportunities:

- Personalized risk stratification models
- Policy advocacy for rural telehealth
- Multi-specialty remote monitoring applications

Clinical Implications

Mobile cardiac monitoring enables early detection of cardiac events, reduces emergency department visits, and improves patient outcomes through continuous monitoring and timely interventions. Impact to Advanced Nursing Practice: This intervention enhances the FNP role as both clinician and innovator. demonstrating how technology can bridge care gaps and improve patient outcomes. The model establishes a foundation for expanded telehealth applications and positions advanced practice nurses as leaders in rural health innovation.

References

Angel, S. Y., et al. (2020). The American Heart Association's 2020 Impact Goal. *Circulation*, 141(9). • Coombs, N. C., et al. (2022). A qualitative study of rural healthcare providers' views. *BMC Health Services Research*, 22(1). • Dayoust, M., et al. (2025). Patient and clinician experiences with telemedicine implementation. *Addiction Science* & *Clinical Practice*, 20(1). • Ludomirsky, A. R., et al. (2020). Association of financial hardship with adverse outcomes. *JAMA Cardiology*, 5(6), 713. • Zhou, Y., et al. (2020). Machine Learning-Based Risk Assessment for Cancer Therapy. *Journal of the American College of Cardiology*, 76(23), 2768-2781.